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Welcome Industry 4.0

1. Extracting data using sensors

2. Transmitting data using networks 

3. Storing data in a cloud

4. Processing data using computers and analytics

5. Visualizing data using computers

6. Using data for making decisions 



Welcome Industry 4.0

1. Extracting data using sensors: Accurate extraction? 

2. Transmitting data using networks: Secure transmission? 

3. Storing data in a cloud: Reliable storage?

4. Processing data using computers and analytics: Efficient analysis?

5. Visualizing data using computers: Useful visualization?

6. Using data for making decisions: Smart decisions?





Only 2% (in average) of data are used for making operational decisions



SB@

The universe is data that can not be copied
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Hot technologies

What is behind these technologies?



120 Years of Moore’s Law



120 Years of Moore’s Law

Bringing commercial transistors to the atomic realm in 2020



120 Years of Moore’s Law



Second Quantum Revolution

First quantum revolution:
Collective quantum phenomena 

Lasers Transistors
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Second Quantum Revolution

First quantum revolution:
Collective quantum phenomena 

Lasers Transistors

Second quantum revolution:
Individual quantum systems

Single atoms, ions, electors

$3 Trillion Industry $10 Trillion Industry?

$100 Trillion Industry?

More?



Quantum Systems Are Remarkable!



Why it is a Revolution?

Wearing devices with 
quantum sensors

New medical and bio-
sensors

GPS with 
atomic clocks

SENSORS

Health

Robots

Artificial Intelligence 

Quantum RNG

New materials 
through quantum 

simulators

COMPUTING AND 
STORAGE

Big Data

IoT

Quantum 
computers

Quantum 
cryptography

COMMUNICATIONS

New 
materials



Second Quantum Revolution: Who are in the game?

~$100M ~$100M ~$100M~$50M ~$150M

€1 млрд $400 млн$800 млн$10 млрд $100 млн $75 млн $44 млн

Примеры отдельных 
государственных программ 
по квантовым 
технологиям*

€1 млрд $400 млн$800 млн$10 млрд $100 млн $75 млн $44 млн

Примеры отдельных 
государственных программ 
по квантовым 
технологиям*

€1 млрд $400 млн$800 млн$10 млрд $100 млн $75 млн $44 млн

Примеры отдельных 
государственных программ 
по квантовым 
технологиям* $20+ bln $10 bln € 2+1 bln $400 mln $100 mln $75 mln $44 mln

$100 mln $50 mln $100 mln $100 mln $150 mln

• Governmental programs

• Corporations

• Venture: $150+ mln in the last three years





Simple Quantum Technology:  
Quantum Random Number Generator

• First-principles calculations (Monte-Carlo).
• Information security and cryptography.
• E-commerce.
• Lotteries and online casinos.

Source of photons

Detector “0”

Detector “1”
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From Superposition to Quantum Information

|0ñ+|1ñ 



From Superposition to Quantum Information

( |0ñ+|1ñ )2=|00ñ+|01ñ+|10ñ+|11ñ 



From Superposition to Quantum Information

Impossible to simulate using supercomputers!  
Idea for a next generation of computers!

( |0ñ+|1ñ )n

n=50: supercomputer

n=300: more states than 
atoms in the Universe



How to Build a Quantum Computer?

Quest for controlling 
quantum world



Universal Quantum Rivalry: Who are Involved?



Universal Quantum Rivalry   

Scalability Controllability

VS

D. Nadlinger, Oxford (2018)



Universal Quantum Rivalry: Who are Involved?

Добавлено кубит: 100
Уменьшен коэфф. ошибок: 0
Увеличен квантовый объем: 00

Рост числа кубит не улучшает 
квантовый компьютер, если 
вероятности ошибок высока



What are Quantum Computers?

Universal quantum computer - 
a unique phase of matter 

Special-purpose quantum machines, e.g. 
quantum simulators

Small-scale quantum computers



Search and optimisation Simulating complex systems Factorization

Why Quantum Is Power: Quantum Supremacy



What Can we Do with Quantum Computers?

12

About Quantum Simulators
The design of aircraft, buildings, cars and many other complex objects makes use of supercomputers. By 
contrast, we cannot yet predict if a material composed of few hundred atoms will conduct electricity or 
behave as a magnet, or if a chemical reaction will take place. Quantum simulators based on the laws of 
quantum physics will allow us to overcome the shortcomings of supercomputers and to simulate 
materials or chemical compounds, as well as to solve equations in other areas, like high-energy physics. 

Quantum simulators can be viewed as analogue versions of quantum computers, specially dedicated to 
reproducing the behaviour of materials at very low temperatures, where quantum phenomena arise and 
give rise to extraordinary properties. Their main advantage over all-purpose quantum computers is that 
quantum simulators do not require complete control of each individual component, and thus are simpler 
to build. 
Several platforms for quantum simulators are under development, including ultracold atoms in optical 
lattices, trapped ions, arrays of superconducting qubits or of quantum dots and photons. In fact, the first 
prototypes have already been able to perform simulations beyond what is possible with current super-
computers, although only for some particular problems.

This field of research is progressing very fast. Quantum simulators will aim to resolve some of the 
outstanding puzzles in material science and allow us to perform calculations that would otherwise be 
impossible. One such puzzle is the origin of high-Tc superconductivity, a phenomenon discovered about 
thirty years ago, but still a mystery in terms of its origin. The resolution of this mystery will open up the 
possibility of creating materials able to conduct electricity without losses at high temperatures, with 
applications in energy storage and distribution and in transportation. 

Manipulating electron spins to create and process quantum states. D.D. Awschalom, IME Chicago.
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REVIEW RESEARCH

the Boltzmann machine is stochastic, many repetitions are needed to 
determine success probabilities, and in turn, to discover the effect that 
changing a weight in the neural network has on the performance of the 
deep network. When training a quantum Boltzmann machine, in  contrast, 
quantum coherence can quadratically reduce the number of samples 
needed to learn the desired task. Furthermore, quantum access to the 
training data (that is, qRAM or a quantum blackbox subroutine) allows 
the machine to be trained using quadratically fewer access requests to the 
training data than are required by classical methods: a quantum algorithm 
can train a deep neural network on a large training dataset while reading 
only a minuscule number of training vectors20.

Quantum information processing provides new, fundamentally 
 quantum, models for deep learning. For example, adding a transverse 
field to the simple Ising model quantum Boltzmann machine above yields 
a transverse Ising model, which can exhibit a variety of  fundamental 
 quantum effects such as entanglement22,61. Adding further quantum 
couplings transforms the quantum Boltzmann machine into a variety of 
quantum systems57,62. Adding a tunable transverse interaction to a  tunable 
Ising model is known to be universal for full quantum  computing57: with 
the proper weight assignments this model can execute any algorithm 
that a general-purpose quantum computer can perform. Such universal 
deep quantum learners may recognize and classify patterns that classical 
 computers cannot.

Unlike classical Boltzmann machines, quantum Boltzmann machines 
output a quantum state. Thus deep quantum networks can learn to 
 generate quantum states representative of a wide variety of systems, 
allowing the network to act as a form of quantum associative memory63. 
This  ability to generate quantum states is absent from classical machine 
learning. Thus quantum Boltzmann training has applications beyond 
classifying quantum states and providing richer models for classical 
data.

Quantum machine learning for quantum data
Perhaps the most immediate application of quantum machine learning 
is to quantum data—the actual states generated by quantum systems 
and processes. As described above, many quantum machine  learning 
 algorithms find patterns in classical data by mapping the data to  quantum 
mechanical states, and then manipulating those states using basic 
 quantum linear algebra subroutines. These quantum machine  learning 
algorithms can be applied directly to the quantum states of light and of 
matter to reveal their underlying features and patterns. The  resulting 
quantum modes of analysis are frequently much more efficient and 
more illuminating than the classical analysis of data taken from  quantum 
 systems. For example, given multiple copies of a system described by an 
N ×  N density matrix, quantum principal component analysis can be 
used to find its eigenvalues and to reveal the corresponding eigenvectors 
in time O[(logN)2], compared with the O(N2) measurements needed for a 
classical device to perform tomography on a density matrix, and the O(N2) 
operations needed to perform the classical PCA. Such quantum analysis of 
quantum data could profitably be performed on the relatively small quan-
tum computers that are likely to be available over the next several years.

A particularly powerful quantum data analysis technique is the use 
of quantum simulators to probe quantum dynamics. Quantum simu-
lators are ‘quantum analogue computers’—quantum systems whose 
dynamics can be programmed to match the dynamics of some desired 
quantum system. A quantum simulator can either be a special-purpose 
device constructed to simulate a particular class of quantum systems, 
or a general-purpose quantum computer. By connecting a trusted 
quantum simulator to an unknown system and tuning the model of the 
simulator to counteract the unknown dynamics, the dynamics of the 
unknown system can be efficiently learned using approximate Bayesian 
inference64–66. This exponentially reduces the number of measurements 
needed to perform the simulation. Similarly, the universal quantum 
emulator algorithm67 allows one to reconstruct quantum dynamics and 
the quantum Boltzmann training algorithm of ref. 61 allows states to 
be reconstructed, in time logarithmic in the dimension of the Hilbert 

BOX 3
Training quantum Boltzmann  
machines
In quantum Boltzmann machine training we wish  
to learn a set of Hamiltonian parameters (wj) such that for  
a fixed set of Hj we have that our input state ρtrain is well 
approximated22,61 by σ= /−∑ −∑e Tr(e )w H w Hj j j j j j . For all visible 
Boltzmann machines, the quantum relative entropy 
ρ σ ρ ρ ρ σ= −S( ) Tr[ log( ) log( )]train train train train  is the most  

logical way to measure the quality of the approximation. It is  
easy to see (assuming that the kernels of ρ and σ coincide) that  
the quantum relative entropy provides an upper bound for the 
distance between the two states. Thus, minimizing it minimizes  
the error in approximating the state.

Although the relative entropy is an excellent measure of 
the distance between two states, it can be difficult to discover 
experimentally. However, the gradient (that is, the direction of 
greatest change) of the relative entropy is easy to estimate61:

ρ σ σ ρ∂ =S H H( ) Tr( ) Tr( )w j jtrainj

Given an experimental dataset of expectation values for ρtrain and a 
quantum simulator for Tr(σHj) we can find the direction of greatest 
improvement in the quantum relative entropy. Gradient descent 
then is used to update w via η ρ σ→ − ∇w w S ( )train  for η >  0. 
Stoquastic (quantum stochastic) Hamiltonians have the property 
that all off-diagonal matrix elements in the standard basis are real 
and non-positive (equivalently non-negative). No efficient classical 
analogue of this method is known in general for non-stoquastic H 
(see ref. 57).

We show this protocol below for learning a random state 
formed from a uniform mixture of four random states—random 
with respect to the unique and unitarily invariant Haar measure. 
Fewer than ten gradient steps (epochs) are needed to train it to 
approximately generate ρtrain using a complete set of Hamiltonian 
terms.

Box 3  Figure | Learning a random state using a quantum Boltzmann 
machine.

Simulating complex quantum, biological, 
material systems

New algorithms for big data and machine 
learning

Bad news: Breaking popular public-key cryptography primitives

In 1995, Peter Shore proposed an algorithm for factorization and 
discrete logarithms for polynomial time for a quantum computer.
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First Discoveries with Quantum Computing

Quantum mechanics

• Coherent dynamics
• Unitary evolution

Statistical physics

• Statistical ensembles 
• Phases of matter

How quantum mechanics goes to quantum statistical physics? How? When?



Quantum Rivalry

50 qubits

100 qubits

+ 5-qubit CPU with free access

average size of quantum processors

in a couple of years



Quantum Rivalry

Improved architecture, greater 
reliability, improved thermal 
stability, less radio frequency 

interference between the 
qubits.

50 qubits

100 qubits

+ 5-qubit CPU with free access

average size of quantum processors

in a couple of years



Quantum Rivalry

John Martinis

20 qubits
Universal
quantum computer

72 qubits
In 2018



Quantum Rivalry

Mikhail Lukin
51 qubits

quantum simulator on cold atoms



Quantum Rivalry

53 qubits
quantum simulator on trapped 
ions

Chris Monroe



Quantum Rivalry

20 qubits

400 qubits

Today

This year

50 qubits

In 3 years

Jiang-Wei Pan



Quantum Rivalry

+ 20-qbit CPU with free 
access

Prototype with the 
possibility of scaling

72 qubits

Universal quantum 
computer

Boson sampler from 
China

3-5 photons
50 qubits

50 qubits

Simulator LIQUi |> - software 
architecture and tools for quantum 
computing



Quantum Machine Learning  
with Special-Purpose Machines



Practical Questions Beyond Science

Program existing quantum machines



Practical Questions Beyond Science

https://quantumexperience.ng.bluemix.net/qx/editor

https://quantumexperience.ng.bluemix.net/qx/editor


Practical Questions Beyond Science

Database search: Grover's algorithm

Grover's algorithm is a quantum algorithm that finds with high 
probability the unique input to a black box function that produces a 
particular output value



Practical Questions Beyond Science

Simulation

Quantum 
Run I
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Quantum 
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Practical Questions Beyond Science

Simulation

Quantum 
Run I

Quantum 
Run II



Quantum Chemistry

Calculation of the electronic and energy structure of 
complex quantum systems, reaction thresholds, 
kinetic and thermodynamic properties

LETTERRESEARCH
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

50 кубит
+ 20 кубитный процессор со свободным 
доступом



Quantum Chemistry

Gate count 1018

Parallel circuit depth 1017

Run time @ 10ns gate time 30 years

Reduced gate count 1011

Parallel circuit depth 1010

Run time @ 10ns gate time 2 minutes

An example of calculation for a Fe2S2 molecule with 118 spin-orbitals



Machine Learning Tasks

https://pjreddie.com/darknet/yolo/

https://pjreddie.com/darknet/yolo/


Machine Learning Tasks

Fast re-learning systems

Good samples for learning

Increasing performance of algorithms

Finding unusual patterns in data



Quantum Machine Learning

Quantum neural networks are a way of searching for and analyzing regularities in large amounts of data using the methods of 
quantum physics.

Creation of quantum neural networks to 
accelerate the solution of optimization 
problems, processing of large data sets, 

clustering and classification.

The use of machine learning and neural 
networks for the study of complex (many-

particle) quantum systems

Directions



Quantum Machine Learning

The use of quantum technologies leads to a sufficient acceleration of the training of 
neural networks in comparison with classical approaches.



Quantum Machine Learning  
with Special-Purpose MachinesQuantum-assisted	unsupervised	learning	on	digits

(quantum) 
machine

Human

Human	or	(quantum)	machine?	(Turing	test)

Dataset:	Optical	Recognition	of	Handwritten	Digits	(OptDigits)

Results	from	experiments	using	940	qubits,	without	post-processing.	
The	hardware-embedded	model	represents	a	46	node	fully	connected	graph.



Quantum Computers Threaten Information Security 

§ Modern asymmetric cryptography is based on the 
complexity of solving a certain class of 
mathematical problems, for example, factorization 
(factorization into prime factors).

§ At the moment, an effective algorithm for solving 
such a problem is unknown, so an attacker needs 
a lot of time to crack a cryptographic key.

§ In 1995, Peter Shore proposed an algorithm for 
factorization and discrete logarithms for 
polynomial time for a quantum computer.

§ The number 15 was decomposed into multipliers 
3 and 5 using a quantum computer using a 
computer with 7 qubits.
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How to proceed: the alternatives

New
Q-safe

algorithms
QKD

QKD = Quantum Key Distribution



Quantum key distribution 

• Measure without disturbing 

• Split photons

• Copy quantum states



Quantum Communications in Russia

QRATE

Startup of the Russian Quantum Center

Commercial production will begin in 2018-
2019

Partners:



Quantum Communications in Russia

Б. Андроновский переулок Ул. Вавилова

Secure Conferencing Protected

workflow
Quantum

blockchain

VPN-tunnel

The following applications are planned to be implemented



World-first quantum-secured blockchain



World-first quantum-secured blockchain



Hybrid Quantum-Post-Quantum Security



Quantum sensing and metrology

• Microscopic impurities in crystals (NV-centers) 
• Microscopic magnetic fields lead to a change in their quantum states, which 

can be "seen" using lasers. Spatial resolution: tens of nanometers



Quantum sensing and metrology

• Atomic clocks are the most accurate time and frequency standards known, 
and are used as primary standards for international time distribution 
services, to control the wave frequency of television broadcasts, and in 
global navigation satellite systems such as GPS.

NATURE PHYSICS DOI: 10.1038/NPHYS3000 ARTICLES
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Figure 1 | The concept of world-wide quantum clock network. a, Illustration
of a cooperative clock operation protocol in which individual parties (for
example, satellite-based atomic clocks from different countries) jointly
allocate their respective resources in a global network involving entangled
quantum states. This guarantees an optimal use of the global resources,
achieving an ultra-precise clock signal limited only by the fundamental
bounds of quantum metrology and, in addition, guaranteeing secure
distribution of the clock signal. b, In addition to locally operating the
individual clocks, the different nodes (satellites) employ network-wide
entangled states to interrogate their respective local oscillators (LOs). The
acquired information is sent to a particular node, serving as a centre, where
it is used to stabilize a centre-of-mass mode of the different LOs. This yields
an ultra-precise clock signal accessible to all network members.

which is subsequently distributed to the individual nodes in a secure
fashion. As a result, after a few cycles, the LOs corresponding to
each individual node achieve an accuracy and stability effectively
resulting from interrogating atoms in the entire network.

Preparation of network-wide entangled states
In the initialization stage of each clock cycle, entangled states
spanning across the nodes at different geographical positions of the
network are prepared. In the following, we describe exemplarily how
a single network-wide Greenburger–Horne–Zeilinger (GHZ) state
can be prepared. The entangled states employed in the proposed
quantum network protocol—which is described in the following
section—consist of products of GHZ states of different size. They
can be prepared by repetition of the protocol that we now describe.

For simplicity, we assume that each node j (j= 1, . . . ,K ) con-
tains an identical number n of clock qubits, which we label as
1j, 2j, . . . ,nj (in the Supplementary Information we discuss the case
where the nodes contain different numbers of clock qubits). Fur-
ther, we assume, for convenience, that the centre node (j= 1) has
access to an additional 2(K −1) ancilla qubits a2, . . . ,aK ,b2, . . . ,bK
besides the n clock atoms (a slightly more complicated procedure
allows one to refrain from the use of ancilla qubits, see Supple-
mentary Information). The entangling procedure starts at the cen-
tre with the creation of a fully entangled state of one half of the
ancilla qubits {bj}, and its first clock qubit 11. This can be real-
ized, for example, with a single qubit π/2-rotation (on qubit 11)

and a collective entangling operation, which is equivalent to a
series of CNOT gates11 (between 11 and each bj). The result is a
GHZ state, [|00 . . . 0⟩11,b2,b3,...,bK + i|11 . . . 1⟩11,b2,b3,...,bK ]/

√
2. In par-

allel, the centre uses the other half of the ancillas {aj} to cre-
ate single Einstein–Podolsky–Rosen (EPR) pairs with each node
j ̸=1, either by directly sending flying qubits and converting them
to stationary qubits, or by using quantum repeater techniques to
prepare high-fidelity entanglement12. As a result of this procedure,
one part of the pair is stored at the centre node (qubit aj), while
the other one is stored at the jth node (qubit 1j), forming the states
[|00⟩aj ,1j +|11⟩aj ,1j ]/

√
2 for every j (see Fig. 2).

Next, the centre performs K − 1 separate Bell measurements
on its ancilla qubit pairs {(bj, aj)}. This teleports the state of qubit
bj to qubit 1j (j = 2, . . . , K ), up to a local single-qubit rotation,
which is performed after the measurement outcomes are sent to
the node via classical channels. The result of the teleportations is
a collective GHZ state [|00 . . . 0⟩11,12,...,1K + i|11 . . . 1⟩11,12,...,1K ]/

√
2,

stretching across the first qubits of all K nodes.
In the final step of entangling, all nodes (including the centre)

extend the entanglement to all of their remaining clock qubits. To
do this, each node j performs the collective entangling operation
mentioned before based on 1j and targeting qubits 2j, 3j, . . . ,nj. At the
end of the protocol the different nodes share a common GHZ state
[|0⟩+ i|1⟩]/

√
2, where |0⟩ and |1⟩ are product states of all qubits

{ij : i=1,2, . . . ,n, j=1,2, . . . ,K } being in |0⟩ or |1⟩, respectively. As
discussed below, in practice the entanglement distribution can be
done either via polarization- or frequency-entangled photons with
frequency difference in the microwave domain, in which case the
ancillary qubits involved in the entanglement distribution will be
different from the clock qubits. Typically, as part of the preparation
process, time delays arise between the initialization of different clock
qubits. Its detrimental effects can be entirely avoided by proper local
timing or prior preparation of entanglement, as discussed in the
Supplementary Information.

Interrogation
The use of entangled resources during the interrogation phase
enables an optimal use of the available resources via the following
procedure. Assume we have a total of Ñ qubits at our disposal
which are equally distributed between the K nodes (indexed
j=1, . . . ,K ) and prepared in a nonlocal GHZ state [|0⟩+ i|1⟩]/

√
2,

where |0 (1)⟩≡ |0(1)⟩⊗Ñ . During the interrogation time T , a clock
qubit at node j picks up a relative phase φj =δjT . Owing to the non-
local character of the state, these phases accumulate in the total state
of the atoms [|0⟩+ ieiΦ |1⟩]/

√
2, where the collective phase after the

interrogation time T is given as

Φ =
K∑

j=1

Ñ
K φj = ÑδCOMT (1)

where δCOM = νCOM −ω0. To extract the phase information picked
up by the different GHZ states, the individual nodes j measure
their respective qubits in the x-basis, and evaluate the parity of
all measurement outcomes pj. Subsequently, the nodes send this
information to the centre node via a classical channel, where the
total parity p = ∏

j pj is evaluated, and the phase information
is extracted13,14. Note, that only the full set {pj|j = 1 . . . K }
contains information.

The proportionality with Ñ in equation (1) represents the
quantum enhancement in the estimation of δCOM. However, for
realistic laser noise spectra, this suggested enhancement is corrupted
by the increase of uncontrolled phase slips for a single GHZ
state15: whenever, after the Ramsey time T , the phase Φ—which
owing to the laser frequency fluctuations constitutes a random
variable itself—falls out of the interval [−π, π] the estimation
fails. This limitation restricts the maximal Ramsey time to values
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R&D in Quantum Technologies in Russia

Fundamental research
Technology transfer and 

commercialization
Education, enlightenment and 

popularization of science

2010 June 2016June 2013 Feb. 2015

Idea Own laboratories 5 start-up 
companies

Demonstration of quantum 
cryptography in commercial lines

Aug. 2012

Obtaining core funding

May 2017
The world's first 

quantum 
blockchain

Dec. 2017
Quantum-protected 

transmission of actual data in 
urban conditions 



R&D in Quantum Technologies in Russia

185

Average age34

10

12

Researchers and engineers

Scientific groups

Own advanced experimental laboratories

450+ Articles in leading editions, incl. Science & Nature

7,27

7,02

6,6

2

0,8

Leading research 
institutes in Russia

RQC,  Moscow

CQT, Singapore

ICFO, Barcelona

The level of scientific productivity

The indicator at the level of the best research centers 

of the world



R&D in Quantum Technologies in Russia

A new generation of solid-state 
photodetectors (Dephan) Quantum cryptography Magnetometers based on ferrite 

garnet films

Spintronic microwave detector Coherent Raman spectroscopy Post-Quantum cryptography



Working with Industry: From Fantasy to Reality

• Financial services: Barclays, Goldman Sachs, Banks (Sberbank and Gazprombank 
in Russia).

• IT: Google, IBM, Intel, Microsoft, Alibaba, Hewlett Packard Enterprise, Microsoft, 
Nokia, Bell Labs, and Raytheon.

• Military and Government: Lockheed Martin, NASA
• Aerospace: Boeing, Airbus. 
• Automotive: Volkswagen Group



Quantum Technologies Today:

• Quantum technologies as a R&D ecosystem

✓Quantum computing
✓Quantum communications
✓Quantum sensing
✓Quantum metrology

• Quantum technologies as a Business ecosystem 

✓Governmental funds and organisations
✓Development: Industry (e.g., IT)
✓Implementation: Industry.
✓VC
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Thank you for your attention! 

Aleksey Fedorov 
akf@rqc.ru

Think Big — Scale Fast

mailto:akf@rqc.ru
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