

Образовательная онлайн-платформа edunano.ru

e-mail: edunano@enano.info

тел: +7 (989) 563-06-55

Курс: «Информационная безопасность на микро- и наноуровнях»

Получите навыки в области противодействия информационным угрозам и научитесь анализу методов информационной защиты микро- и наносистем, используемых в электронных, радиоэлектронных и информационных системах.

Стоимость обучения: 3 000 ₽

Когда: 60 дней дней с момента оплаты

Тема ИТ, Микроэлектроника

Формат Курс

Уровень Базовый

Тип обучения Самостоятельно

ОПИСАНИЕ КУРСА

Современный этап развития информационных технологий характеризуется бурным прогрессом информационных систем, в том числе беспроводных, быстрым освоением элементной базы с наноразмерными топологическими нормами, интеграцией на одном кристалле процессорных, преобразовательных, радиоприемных и радиопередающих модулей, а также приданием кристаллу сенсорных, информационных и исполнительных функций. Одной из приоритетных задач является создание защищенной информационной среды, разработка и практическое внедрение безопасных информационнотелекоммуникационных систем и комплексов отечественного производства.

Проблема возникновения информационных угроз на микро- и наноуровнях особенно остро стоит при применении современных микросистем иностранного производства в радиоэлектронной аппаратуре различного назначения. Анализ методов информационной защиты микро- и наносистем позволит разработчикам отечественной элементной базы создать надёжную, качественную и безопасную электронную продукцию, отвечающую запросам современного рынка.

В рамках курса слушатели познакомятся с:

- изложением системного подхода к анализу угроз безопасности на микро- и наноуровне;
- описанием путей повышения защищённости высоко-интегрированных информационных микро- и наносистем при использовании контактного и бесконтактного интерфейсов;
- определением направлений противодействия несанкционированному доступу к информационным и аппаратным ресурсам микро- и наносистем.

БУДЕТ ПОЛЕЗНО:

- Студентам широкого круга специальностей, в программе обучения которых курс, посвящённый разработке микросистем и информационной безопасности, изучается в базовой, вариативной или факультативной частях
- Научным сотрудникам и инженерам, специализирующимся в области тестирования и контроля электронной компонентной базы
- Аспирантам, преподавателям, научным работникам и инженерам, специализирующимся в области разработки ЭКБ информационной электроники и информационно-телекоммуникационных систем и комплексов отечественного производства

ВЫ НАУЧИТЕСЬ:

- Анализировать методы информационной защиты микро- и наносистем с целью создания надёжной, качественной и безопасной электронной продукции
- Использовать теоретические и практические знания в области обеспечения информационной безопасности современной электронной компонентной базы

По окончании курса – выдаем Электронный сертификат АНО "еНано"

АТУАЛЬНОСТЬ:

Курс подготовлен совместно с коллективом <u>Санкт-Петербургского государственного</u> <u>электротехнического университета «ЛЭТИ»</u>.

ПРОГРАММА

1. Информационная безопасности интегральных микро- и наносистем

- Информационная безопасность на микро- и наноуровнях
- Понятие реинжиниринга (обратного проектирования)
- Стадии и методы обратного проектирования ЭКБ
- ^о Специализированные программные средства для обратного проектирования ЭКБ
- Противодействие обратному проектированию

2. Угрозы информационной безопасности микро- и ноносистем при реализации RFIDтехнологий. Уязвимости и методы защиты

- [○] Введение
- Особенности организации и принцип работы систем, использующих RFIDтехнологию
- Уязвимости и методы защиты считывателя системы, использующей RFIDтехнологию
- Защита данных, хранящихся на RFID-метке
- Радиочастотный интерфейс взаимодействия RFID-метки и считывателя
- Структура и алгоритм работы блока аутентификации
- [○] Заключение

3. Инвазивный реинжиниринг микро- и наносистем. Декапсуляция микро- и наносистем

- Особенности корпусирования кристаллов ИС
- Механическое и химическое препарирование корпусов ИС
- [◦] Жидкостно-химическое препарирование кремниевых кристаллов и систем коммутации ИС
- [○] Препарирование корпуса и кристалла ИС с тыльной стороны
- ^о Ионно-плазменное послойное препарирование систем коммутации кристаллов ИС
- [◦] Ионно-лучевое и ионно-стимулированное химическое препарирование кристаллов ИС
- Декорирование поверхности и поперечных сечений кристаллов кремниевых ИС

4. Инвазивный реинжиниринг микро- и наносистем. Тополого-схемотехнический

анализ

- Суть тополого-схемотехнического анализа
- ^о Системы визуализации топологии и покадровое совмещение
- [◦] Межслойное совмещение
- ^о Выявление функционального блока
- Восстановление электрической схемы
- Библиотеки топологических элементов

5. Инвазивный реинжиниринг микро- и наносистем. Конструкторско-технологический анализ

- Классификация интегральных схем
- ^о Конструктивно-технологические особенности интегральных схем
- ^о Определение элементного состава структурообразующих слоев
- ^о Измерение геометрических параметров структуры
- Анализ поперечного сечения

6. Инвазивный реинжиниринг микро- и наносистем/Функциональное тестирование

- [○] Введение
- ^о Методика классификации параметров встроенных spice-моделей
- Определение основных параметров, влияющих на точность моделирования при использовании программы SPICE. Статические и динамические характеристики МОП-структур
- [◦] Контрольные оценки значений параметров SPICE-модели
- Определение характерных диапазонов изменения параметров моделирования, построение SPICE-модели
- Определение параметров интегральных резисторов
- ^о Определение статических характеристик транзисторов
- [◦] Восстановление электрической схемы

7. Неинвазивный реинжиниринг микро- и наносистем

- [◦] Введение
- Виды атак на криптосистемы
- Анализ микроконтроллеров
- ^о Способы анализа энергопотребления
- Математические модели и статистический анализ
- Современное состояние и направления дальнейшего развития

8. Полуинвазивный реинжиниринг микро-и наносистем

- Подготовительный этап реинжиниринга
- Декапсуляция корпуса электронного устройства
- [○] Зондовый анализ
- Электронно-зондовое тестирование
- Атомно-силовое тестирование

^о Воздействие на элементы памяти и заключение

9. Методы защиты от реинжиниринга на микро-и наноуровнях

- [◦] Обзор защищенности микро- и наносистем
- Защита от инвазивного реинжиниринга
- [◦] Защита от полуинвазивного реинжиниринга
- [◦] Защита от неинвазивного реинжиниринга и заключение

10. Проблема контрафактных микро- и наносистем и методы защиты

- Последствия применения продукции контрафактного происхождения
- Объемы, признаки и методы выявления контрафактной продукции
- ^о Виды признаков контрафактного происхождения электронной компонентной базы, выявляемые с помощью визуально-оптического контроля
- ^о Виды признаков контрафактного происхождения электронной компонентной базы, выявляемые с помощью рентгеновской микроскопии
- ^о Виды признаков контрафактного происхождения электронной компонентной базы, выявляемые с помощью акустической микроскопии
- ^о Отечественная контрафактная продукция
- [◦] Заключение

АВТОРЫ:

ЛУЧИНИН ВИКТОР ВИКТОРОВИЧ	Доктортехнических наук, профессор, заведующий кафедрой микро- и наноэлектроники СПбГЭТУ «ЛЭТИ», директор Инжинирингового центра Микротехнологии и диагностики
ГАСНИКОВ АЛЕКСЕЙ ОЛЕГОВИЧ	Ассистент кафедры микро- и наноэлектроники СПбГЭТУ «ЛЭТИ», к.т.н.
КАЛИНИН СТАНИСЛАВ БОРИСОВИЧ	Научный сотрудник Центра микротехнологии и диагностики СПбГЭТУ «ЛЭТИ»
ЛЕВИН РОМАН ГРИГОРЬЕВИЧ	Первый заместитель генерального директора АО «РНИИ «Электронстандарт», к.ф-м.н.
КОНДРАШОВ КИРИЛЛ КОНСТАНТИНОВИЧ	Инженер Центра микротехнологии и диагностики СПбГЭТУ «ЛЭТИ»

ТРУШЛЯКОВА ВАЛЕНТИНА

ВЛАДИМИРОВНА

Доцент кафедры микро- и наноэлектроники СПбГЭТУ «ЛЭТИ»