

Образовательная онлайн-платформа edunano.ru

e-mail: edunano@enano.info

тел: +7 (989) 563-06-55

Курс: «Системное мышление. Практика»

Курс поможет приобрести знания и навыки системного мышления для выстраивания междисциплинарной работы и эффективного общения проектной команды на общем для всех системном языке. Проходит с преподавателем и обратной связью.

Стоимость обучения: 8 500 ₽ Тема Системное мышление

Когда: 30 дней дней с момента оплаты Формат Курс

Уровень Базовый

Тип обучения С преподавателем

ОПИСАНИЕ КУРСА

Системное мышление является общим навыком, необходимым всем специалистам, которые участвуют в коллективной работе по выполнению сложных проектов, оно лежит в основе деятельности системных инженеров, менеджеров и технологических предпринимателей. Этот курс поможет понять, что такое система, каковы её границы, какие требования применяются в отношении системы, а также познакомит с определением стейкхолдеров и их интересов, и тем, как на их основе формулируются требования к системе.

БУДЕТ ПОЛЕЗНО:

- Технологические предприниматели и владельцы бизнесов, заинтересованные в целостном взгляде на бизнес, включающем как инженерные, так и менеджерские аспекты
- Инженеры, интересующиеся организацией инженерной деятельности
- Магистранты менеджерских и инженерных специальностей, нуждающиеся в средствах организации своих междисциплинарных знаний

ВЫ НАУЧИТЕСЬ:

- Составлять и использовать чек-лист основных объектов, которые должны быть проработаны для описания вашей целевой системы
- Описывать границы целевой системы
- Определять стейкхолдеров целевой системы
- Формировать описание целевой системы
- Описывать команду проекта
- Выявлять методы работы над целевой системой
- Выбирать и отслеживать жизненный цикл целевой системы
- Вести управление конфигурацией и управлять версиями целевой системы
- Проводить верификацию/проверку целевой системы

По окончании курса – выдаем Электронный сертификат АНО "еНано"

АКТУАЛЬНОСТЬ:

Знания и навыки системного мышления незаменимы для выстраивания междисциплинарной работы и позволяют проектной команде эффективно общаться на общем для всех системном языке.

Курс основан на целом ряде международных стандартов и подходов, согласованных между собой общей терминологией и логикой использования. В курсе детально рассматривается понятие системы, её границы, требования, определения стейкхолдеров и их интересов, а также формулировка требований к системе на основе этих интересов.

ВЫ БУДЕТЕ:

- Принимать участи в 2 вебинарах с автором и преподавателем курса
- Выполнять 2 практические работы (на учебных кейсах)
- Изучать теорию в формате видео-курса

ПРОГРАММА

1. Как научиться системному мышлению

- ^о Место системного мышления среди других мышлений
- Наш вариант системного подхода из системной инженерии
- ^о Трудность освоения системного мышления
- ^о Отношение ктерминологии: множественность терминов
- ^о Замечания по решению задач
- [○] Терминология
- О мышлении

2. Воплощение системы, стейкхолдеры и интересы

- [○] Воплощение системы, 4D экстенсионализм
- [◦] 4D объекты и их описания
- ° "Дырки", процессы
- [○] Процессы как 4D объекты
- Функции
- ^о Физические и функциональные объекты
- ^о Сервисы и компьютерные программы
- Системный подход 2.0, понятие стейкхолдера
- ^о Стейкхолдер -- функциональный объект
- ^о Основные ошибки в определении стейкхолдеров
- Стейкхолдеры
- Интересы
- ^о Стейкхолдеры и интересы
- Воплощение системы, стейкхолдеры

3. Системная холархия

- [◦] Что считать системой
- Холархия
- [◦] Эмерджентность
- ^о Холархия и эмерджентность

- [○] Пять видов систем
- [◦] Использующая система
- [◦] Примеры видов систем
- Люди в системах
- Целевая система и соотношение систем
- ^о Потребности, требования, ограничения
- Системы систем
- [○] Сложностность
- Системная холархия

4. Целевая и использующая системы

- Выбор целевой системы
- [◦] Основные признаки целевой системы
- ^о Ошибки определения целевой системы
- Именование системы
- ^о Признаки использующей системы
- [◦] Обеспечивающая система
- Целевая и использующая системы. Итоги
- ^о Целевая и использующая система

5. Определение и описание системы

- Базовые структуры определения системы
- ° Совмещение логической и физической структур
- Примеры компонент и модулей. Размещения и гибридные описания
- [◦] Компоненты, модули, размещения
- Альфа и рабочие продукты
- Рабочие продукты
- $^\circ$ Описание систем: субъективно и требует метода
- [◦] Описания и интересы
- [◦] Мультимодель и мегамодель
- ^о Множественность описаний. Модель и мета-модель
- [◦] Борьба со сложностью в мышлении
- ^о Требования как часть определения системы
- [◦] Требования и рабочие продукты
- Проверка и приёмка
- Архитектура
- Конфигурация
- ^о Определение и описание системы

6. Понятиежизненного цикла

- Жизненный цикл 1.0
- Жизненный цикл
- Жизненный цикл 2.0
- [◦] Практика=дисциплина+технология
- Практики
- ^о Интересы инженера, исследователя и менеджера
- Методы и методологии
- Понятие жизненного цикла

7. Вид жизненного цикла

- [○] V-диаграмма и её примеры
- Водопад против спирали
- Вид жизненного цикла
- ^о Системные уровни и жизненный цикл
- ^о За пределами жизненного цикла
- Вид жизненного цикла

8. Системная схема проекта

- [◦] Системная схема проекта
- Область интересов, основные альфы
- Альфы общий объект отслеживания
- [◦] Роли и их ведущие альфы
- За чем следить в проекте
- ^о Отслеживание альф, адаптация Essence, подальфы
- Игры со схемой проекта
- ^о Полный жизненный цикл системы и проекта
- ^о Заключительные замечания курса
- [◦] Системная схема проекта иосновной

9. Практика

 Два практических задания (на предоставленных учебных кейсах) под руководством преподавателя сразбором конкретных примеров применения системного мышления и системной инженерии. Время подготовки одного задания - 2 часа.

10. Коммуникация

^о Обсуждение на форуме, рекомендации преподавателя по выполнению практических заданий.

ЦИФРОВЫЕ НАВЫКИ:

- Понимание закономерностей использования практик моделеориентированной системной инженерии, цифровых системных моделей и инструментов их формирования
- Начальные знания моделирования жизненного цикла продукта в системах PLM (product lifecycle management)
- Представление о работе в специализированном программном обеспечении по разработке требований, архитектуры и управления жизненным циклом системы

АВТОРЫ:

БУХАРИН МИХАИЛ АНДРЕЕВИЧ

К.ф.-м.н. по специальности «Лазерная физика». Заместитель генерального директора по техническому развитию ООО «Т8 Сенсор», 10 лет работы в R&D отделах и отделах внедрения продукции лазерных компаний IPG Photonics, ООО «Оптосистемы», ООО «Т8 Сенсор». В течение 9 лет – лектор по курсам «Системное мышление» и «Практики моделеориентированной системной инженерии» в МИФИ, МИСиС, РАНХиГС, читал выездные лекции и онлайн-курсы по системной инженерии для НГУ и СФУ.