

Образовательная онлайн-платформа edunano.ru

e-mail: edunano@enano.info

тел: +7 (989) 563-06-55

Курс: «Инженерия и управление требованиями на этапах жизненного цикла системы»

В курсе разбираются методики выявления и разработки требований к системе и технических заданий, подробно разбирается связь требований с архитектурой системы, её жизненным циклом, практиками верификации (проверки), и валидации (приемки). Курс имеет прикладную направленность: в нем рассмотрены шаблоны, стандарты и практики инженерии требований, которые вы сможете внедрять в свою основную деятельность сразу после его прохождения.

Стоимость обучения: 6 000 ₽

Когда: 60 дней дней с момента оплаты

Тема Менеджмент **Формат** Курс

Уровень Базовый

Тип обучения Самостоятельно

ОПИСАНИЕ КУРСА

Перед инженерами и руководителями проектов на современных производственных предприятиях в процессе создания сложных систем встает ряд вызовов:

- технического задания основного документа для запуска проекта явно недостаточно при решении проектных задач на всех стадиях жизненного цикла технических систем;
- имеется очень мало рекомендаций и практических кейсов, позволяющих освоить лучшие практики системного проектирования от анализа потребностей заинтересованных сторон до формирования конфигураций конечного продукта с применением современного инструментария.

Курс рассчитан на то, чтобы инженеры увидели, оценили, соотнесли со своей производственной деятельностью и получили возможность внедрить на своем предприятии

или в компании современный подход к инженерии и управлению требованиями с использованием методов и средств системной инженерии и управления жизненным циклом систем.

Курс имеет прикладную направленность: в нем рассмотрены шаблоны, стандарты и практики инженерии требований, которые можно внедрять в основную деятельность слушателей курса сразу после его прохождения. Практики, рассматриваемые в нем, позволят выявлять стейкхолдеров системы (проектные роли) и их интересы, формулировать требования к системе и разрабатывать критерии выбора из нескольких альтернативных конструкторских решений.

Материалы курса будут полезны специалистам, занимающимся не только заказными разработками, но и инициативными проектами в рамках spin-off и start up компаний.

Преимущества курса:

- Апробированные инструменты в области инженерии и управления требованиями, которые реально применимы и дают максимальный результат при решении задач;
- Отсутствие длинных описаний терминов: в курсе объясняется то, что пригодится на практике;
- Обучение на сквозном примере системного проектирования конкретного изделия от момента анализа потребностей до формирования технического проекта.

БУДЕТ ПОЛЕЗНО:

- Руководителям проектов в области инженерии автоматизированных систем, перед которыми стоят задачи повышения эффективности проектной деятельности
- Системным архитекторам предприятий, обеспечивающих IT-инфраструктуру современных цифровых производств
- Инженерам, участвующим в разработке сложных технических объектов и обеспечивающих верификацию технических решений на этапах жизненного цикла систем
- Бизнес-аналитикам, системным аналитикам и инженерам по требованиям, занимающимся выявлением потребностей заинтересованных сторон, целеполаганием, разработкой требований и их управлением на всех стадиях жизненного цикла создаваемой системы

ВЫ НАУЧИТЕСЬ:

- Определять требования стейкхолдеров
- Определять стейкхолдеров или классы стейкхолдеров, которые связаны с системой

- на протяжении всего ее жизненного цикла, а также их потребности и пожелания
- Производить анализ требований стейкхолдеров, которые описывают желаемое поведение системы в процессе взаимодействия со средой применения
- Обеспечивать связь требований с верификацией и валидацией для подтверждения того, что система полностью удовлетворяет заявленным требованиям
- Отличать требования от ограничений для системных решений
- Обеспечивать связь требований стейкхолдеров и системных требований
- Собирать требования стейкхолдеров и разрабатывать требований к системе для заключения соглашений о поставке услуги или продукции
- Составлять технические задания

По окончании курса – выдаем Электронный сертификат АНО "еНано"

ПРОГРАММА

1. Место инженерии требований в жизненном цикле системы

- Почему необходима инженерия требований и управление требованиями?
- [◦] Связь с проектными ролями (стейкхолдерами системы)
- ^о Связь с инженерией системной архитектуры
- Связь с практиками верификации и валидации
- Особенности инженерии требований в различных типах жизненных циклов

2. Работа с требованиями в области проблем

- ^о Общая характеристика анализа применения системы
- Oпределение заинтересованных сторон, их проблем, потребностей и целей
- Определение возможностей применения и деятельности по применению системы
- Определение критериев достижения целей и ограничений применения системы
- Требования к системе "Умная колонка" в области проблем (Кейс)

3. Работа с требованиями в области решений

- Определение наиболее приемлемой для заинтересованных сторон концепции системы
- [◦] Проведение анализа функциональных и нефункциональных потребностей. Выявление требований к системе в целом
- Проведение функционального анализа системы на логическом и физическом

- уровне
- ^о Разработка функциональных требований к системе
- Требования к системе "Умная колонка" в области решений (Кейс)

4. Практики работы с требованиями в программной инженерии

- ° Практики программной инженерии требований
- OPS Framework
- Типовые шаблоны требований
- User Story
- Jobs-to-be-done
- ° Use case
- Применение CPS Framework к системе "Умная колонка" (Кейс)
- ^o Применение практик User Story и Jobs-to-be-done и Use Cases к системе "Умная колонка" (Кейс)

5. Практики документирования требований, верификация и валидация требований

- Стандарты инженерии требований. Руководство по написанию требований
- Свойства формулировок требований
- Свойства наборов требований
- [◦] Атрибуты требований
- Виды спецификаций требований согласно общепринятым международным стандартам и рекомендациям, отечественная практика документирования требований. Структура спецификации - разобрать 29148, ГОСТ 15
- Верификация и валидация требований

6. Инструментальные средства поддержки инженерии и управления требованиями

- ^о Обзор инструментов поддержки инженерии требований
- ^o Управление требованиями в средах PLM на примере использования программного обеспечения Capella и T-Flex
- Промышленные системы управления требованиями
- Управление требованиями в средах коллективной работы
- Управление требованиями с помощью электронных таблиц

ЦИФРОВЫЕ НАВЫКИ:

- Понимание закономерностей использования практик моделеориентированной системной инженерии
- Начальные навыки моделирования требований к продукту в PLM-системах (product lifecycle management)
- Представление о работе в специализированном программном обеспечении по разработке требований к системе/продукту

АВТОРЫ:

БУХАРИН МИХАИЛ АНДРЕЕВИЧ

К.ф.-м.н. по специальности «Лазерная физика». Заместитель генерального директора по техническому развитию ООО «Т8 Сенсор», 10 лет работы в R&D отделах и отделах внедрения продукции лазерных компаний IPG Photonics, ООО «Оптосистемы», ООО «Т8 Сенсор». В течение 9 лет – лектор по курсам «Системное мышление» и «Практики моделеориентированной системной инженерии» в МИФИ, МИСиС, РАНХиГС, читал выездные лекции и онлайн-курсы по системной инженерии для НГУ и СФУ.

ГАЙДАМАКА КИРИЛЛ ИГОРЕВИЧ

Главный системный аналитик Концерна "Международные Аэронавигационные Системы", Председатель российского отделения Международного совета по вопросам системной инженерии (INCOSE RUS)

Королев Антон Сергеевич

К.т.н., доцент, преподаватель кафедры системной инженерии РТУ МИРЭА и Высшей инжиниринговой школы НИЯУ МИФИ